Analytic approaches and harmonic functions on Alexandrov spaces with nonnegative Ricci curvature

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Harmonic Functions of Polynomial Growth on Singular spaces with nonnegative Ricci Curvature

In the present paper, the Liouville theorem and the finite dimension theorem of polynomial growth harmonic functions are proved on Alexandrov spaces with nonnegative Ricci curvature in the sense of Sturm, Lott-Villani and Kuwae-Shioya.

متن کامل

Harmonic Functions of Linear Growth on Kähler Manifolds with Nonnegative Ricci Curvature

The subject began in 1975, when Yau [Y1] proved that there are no nonconstant, positive harmonic functions on a complete manifold with nonnegative Ricci curvature. A few years later, Cheng [C] pointed out that using a local version of Yau’s gradient estimate, developed in his joint work with Yau [CY], one can show that there are no nonconstant harmonic functions of sublinear growth on a manifol...

متن کامل

Markov type of Alexandrov spaces of nonnegative curvature ∗ †

We prove that Alexandrov spaces X of nonnegative curvature have Markov type 2 in the sense of Ball. As a corollary, any Lipschitz continuous map from a subset of X into a 2-uniformly convex Banach space is extended as a Lipschitz continuous map on the entire space X.

متن کامل

Ricci curvature and monotonicity for harmonic functions

In this paper we generalize the monotonicity formulas of [C] for manifolds with nonnegative Ricci curvature. Monotone quantities play a key role in analysis and geometry; see, e.g., [A], [CM1] and [GL] for applications of monotonicity to uniqueness. Among the applications here is that level sets of Green’s function on open manifolds with nonnegative Ricci curvature are asymptotically umbilic.

متن کامل

Harmonic Functions on Alexandrov Spaces and Their Applications

The main result can be stated roughly as follows: Let M be an Alexandrov space, Ω ⊂M an open domain and f : Ω→ R a harmonic function. Then f is Lipschitz on any compact subset of Ω. Using this result I extend proofs of some classical theorems in Riemannian geometry to Alexandrov spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2012

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2012.01.043